Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.299
Filtrar
1.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 125-129, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38650141

RESUMO

Myocardial ischemia/reperfusion injury (MIRI) is an irreversible adverse event during the management of coronary heart disease that lacks effective controls. The underlying mechanism of MIRI still requires further investigation. Recent studies have suggested that overexpression of ATF3 protects against MIRI by regulating inflammatory responses, ferroptosis, and autophagy. The downstream target of ATF3, EGR1, also showed cardioprotective properties against MIRI by promoting autophagy. Therefore, further investigating the effect of ATF3/EGR1 pathway on MIRI-induced inflammation and autophagy is needed. Cardiomyocyte MIRI model was established by challenging H9C2 cells with hypoxia/reoxygenation (H/R). The ATF3 overexpression-H/R cell model by transfecting ATF3 plasmid into the H9C2 cell line. The transcription levels of ATF3 and EGR1 were determined using RT-qPCR, the levels of TNF-α and IL-6 were determined using ELISA kits, the protein expression of LC3 I, LC3 II, and P62 was determined via WB, and microstructure of H9C2 cell was observed by transmission electron microscopy (TEM). Overexpression of ATF3 significantly downregulated Egr1 levels, indicating that EGR1 might be the target of ATF3. By upregulating ATF3 levels, the extracellular levels of the inflammatory cytokines TNF-α and IL-6 significantly decreased, and the protein expression of the autophagy markers LC3 I, LC3 II, and P62 significantly increased. TEM results revealed that the cell line in the H/R-ATF3 group exhibited a higher abundance of autophagosome enclosures of mitochondria. The results indicated that ATF3/EGR1 may alleviate inflammation and improve autophagy in an H/R-induced MIRI model of cardiomyocytes.


Assuntos
Fator 3 Ativador da Transcrição , Autofagia , Proteína 1 de Resposta de Crescimento Precoce , Inflamação , Traumatismo por Reperfusão Miocárdica , Miócitos Cardíacos , Fator de Necrose Tumoral alfa , Fator 3 Ativador da Transcrição/metabolismo , Fator 3 Ativador da Transcrição/genética , Autofagia/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Animais , Inflamação/metabolismo , Inflamação/patologia , Inflamação/genética , Ratos , Linhagem Celular , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Interleucina-6/metabolismo , Interleucina-6/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Transdução de Sinais , Proteína Sequestossoma-1/metabolismo , Proteína Sequestossoma-1/genética
2.
Cell Death Dis ; 15(3): 205, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467631

RESUMO

Temozolomide (TMZ), a DNA alkylating agent, has become the primary treatment for glioma, the most common malignancy of the central nervous system. Although TMZ-containing regimens produce significant clinical response rates, some patients inevitably suffer from inferior treatment outcomes or disease relapse, likely because of poor chemosensitivity of glioma cells due to a robust DNA damage response (DDR). GINS2, a subunit of DNA helicase, contributes to maintaining genomic stability and is highly expressed in various cancers, promoting their development. Here, we report that GINS2 was upregulated in TMZ-treated glioma cells and co-localized with γH2AX, indicating its participation in TMZ-induced DDR. Furthermore, GINS2 regulated the malignant phenotype and TMZ sensitivity of glioma cells, mostly by promoting DNA damage repair by affecting the mRNA stability of early growth response factor 1 (EGR1), which in turn regulates the transcription of epithelial cell-transforming sequence 2 (ECT2). We constructed a GINS2-EGR1-ECT2 prognostic model, which accurately predicted patient survival. Further, we screened Palbociclib/BIX-02189 which dampens GINS2 expression and synergistically inhibits glioma cell proliferation with TMZ. These findings delineate a novel mechanism by which GINS2 regulates the TMZ sensitivity of glioma cells and propose a promising combination therapy to treat glioma.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Temozolomida/uso terapêutico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Recidiva Local de Neoplasia/tratamento farmacológico , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Células Epiteliais/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteínas Proto-Oncogênicas/farmacologia , Proteínas Cromossômicas não Histona
3.
BMC Cancer ; 24(1): 268, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408959

RESUMO

BACKGROUND: Gemcitabine is a cornerstone drug for the treatment of all stages of pancreatic cancer and can prolong the survival of patients with pancreatic cancer, but resistance to gemcitabine in pancreatic cancer patients hinders its efficacy. The overexpression of Early growth response 1(EGR1) in pancreatic ductal adenocarcinoma as a mechanism of gemcitabine chemoresistance in pancreatic cancer has not been explored. The major mechanisms of gemcitabine chemoresistance are related to drug uptake, metabolism, and action. One of the common causes of tumor multidrug resistance (MDR) to chemotherapy in cancer cells is that transporter proteins increase intracellular drug efflux and decrease drug concentrations by inducing anti-apoptotic mechanisms. It has been reported that gemcitabine binds to MDR1 with high affinity. The purpose of this research was to investigate the potential mechanisms by which EGR1 associates with MDR1 to regulate gemcitabine resistance in pancreatic cancer cells. METHODS: The following in vitro and in vivo techniques were used in this research to explore the potential mechanisms by which EGR1 binds to MDR1 to regulate gemcitabine resistance in pancreatic cancer cells. Cell culture; in vitro and in vivo study of EGR1 function by loss of function analysis. Binding of EGR1 to the MDR1 promoter was detected using the ChIP assay. qRT-PCR, Western blot assays to detect protein and mRNA expression; use of Annexin V apoptosis detection assay to test apoptosis; CCK8, Edu assay to test cell proliferation viability. The animal model of pancreatic cancer subcutaneous allograft was constructed and the tumours were stained with hematoxylin eosin and Ki-67 expression was detected using immunohistochemistry. FINDINGS: We revealed that EGR1 expression was increased in different pancreatic cancer cell lines compared to normal pancreatic ductal epithelial cells. Moreover, gemcitabine treatment induced upregulation of EGR1 expression in a dose- and time-dependent manner. EGR1 is significantly enriched in the MDR1 promoter sequence.Upon knockdown of EGR1, cell proliferation was impaired in CFPAC-1 and PANC-1 cell lines, apoptosis was enhanced and MDR1 expression was decreased, thereby partially reversing gemcitabine chemoresistance. In animal experiments, knockdown of EGR1 enhanced the inhibitory effect of gemcitabine on tumor growth compared with the sh-NC group. CONCLUSIONS: Our study suggests that EGR1 may be involved in the regulation of MDR1 to enhance gemcitabine resistance in pancreatic cancer cells. EGR1 could be a novel therapeutic target to overcome gemcitabine resistance in pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Humanos , Gencitabina , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Apoptose , Proteína 1 de Resposta de Crescimento Precoce/genética
4.
Mol Biol Rep ; 51(1): 365, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409611

RESUMO

A low-frequency variant of sushi, von Willebrand factor type A, EGF, and pentraxin domain-containing protein 1 (SVEP1) is associated with the risk of coronary artery disease, as determined by a genome-wide association study. SVEP1 induces vascular smooth muscle cell proliferation and an inflammatory phenotype to promote atherosclerosis. In the present study, qRT‒PCR demonstrated that the mRNA expression of SVEP1 was significantly increased in atherosclerotic plaques compared to normal tissues. Bioinformatics revealed that EGR1 was a transcription factor for SVEP1. The results of the luciferase reporter assay, siRNA interference or overexpression assay, mutational analysis and ChIP confirmed that EGR1 positively regulated the transcriptional activity of SVEP1 by directly binding to its promoter. EGR1 promoted human coronary artery smooth muscle cell (HCASMC) proliferation and migration via SVEP1 in response to oxidized low-density lipoprotein (ox-LDL) treatment. Moreover, the expression level of EGR1 was increased in atherosclerotic plaques and showed a strong linear correlation with the expression of SVEP1. Our findings indicated that EGR1 binding to the promoter region drive SVEP1 transcription to promote HCASMC proliferation and migration.


Assuntos
MicroRNAs , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/metabolismo , Vasos Coronários/metabolismo , Estudo de Associação Genômica Ampla , Movimento Celular , Lipoproteínas LDL/farmacologia , Células Cultivadas , Proliferação de Células/genética , Miócitos de Músculo Liso/metabolismo , MicroRNAs/genética , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Moléculas de Adesão Celular/genética
5.
Mol Biol Rep ; 51(1): 279, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324049

RESUMO

BACKGROUND: Epilepsy is a neurological disease characterized by recurrent seizures, hyperexcitable neurons and various behavioral comorbidities. The electrical charge during seizures depletes the antioxidant defense mechanism in the epileptic brain and increases the oxidative burden. Natural antioxidant compounds are potential therapeutics in the treatment of two major pathologies of epilepsy with their anticonvulsant and anxiolytic effects and can modulate these targets. Gum Arabic is one of the natural plant polysaccharides that is non-toxic and biodegradable. METHODS AND RESULTS: A total of 30 Wistar albino male rats (8-12 weeks, 350-500 g), were randomly divided into 5 groups with 6 animals in each group: 1-Control, 2-Sham (Phosphate buffer saline (PBS)), 3-PTZ, 4-Gum Arabic, 5-PTZ + Gum Arabic. PTZ was administered i.p at 35 mg/kg/day for 11 days. After 48 h, the injection was completed with 75 mg/kg PTZ. Locomotor activity, immobilization, rearing, grooming, eating, and drinking behaviors were recorded with the LABORAS behavior system for 30 min after kindling. Animals were treated with Gum Arabic (2 mg/kg/day, oral gavage) for 10 days. At the end of the period, animal behavior was recorded again. Then the hippocampus tissues were removed. Oxidative parameters (TAS and TOS), early growth response 1 (EGR1) and nuclear receptor subfamily 1 group D member 1 (Rev-erbα) gene expressions and behaviors were analyzed. CONCLUSION: Gum Arabic increased TAS levels (P = 0.000), decreased TOS levels (P = 0.000), and thus exhibited antioxidant properties by reducing oxidative stress burden. EGR1, which was upregulated in the seizure group, was downregulated after treatment (P = 0.000), and Rev-erbα was downregulated in seizure and upregulated after treatment (P = 0.000). Gum arabic may be an antiepileptic and anxiolytic therapeutic in improving epileptic seizures by reducing oxidative stress burden through EGR1 and Rev-erbα.0.


Assuntos
Ansiolíticos , Proteína 1 de Resposta de Crescimento Precoce , Epilepsia , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares , Animais , Ratos , Anticonvulsivantes , Antioxidantes , Goma Arábica , Ratos Wistar , Convulsões , Proteína 1 de Resposta de Crescimento Precoce/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética
6.
Int J Biol Sci ; 20(4): 1314-1331, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38385088

RESUMO

Peritoneal metastasis (PM) continues to limit the clinical efficacy of gastric cancer (GC). Early growth response 1 (EGR1) plays an important role in tumor cell proliferation, angiogenesis and invasion. However, the role of EGR1 derived from the tumor microenvironment in reshaping the phenotypes of GC cells and its specific molecular mechanisms in increasing the potential for PM are still unclear. In this study, we reported that EGR1 was significantly up-regulated in mesothelial cells from GC peritoneal metastases, leading to enhanced epithelial-mesenchymal transformation (EMT) and stemness phenotypes of GC cells under co-culture conditions. These phenotypes were achieved through the transcription and secretion of TGF-ß1 by EGR1 in mesothelial cells, which could regulate the expression and internalization of CD44s. After being internalized into the cytoplasm, CD44s interacted with STAT3 to promote STAT3 phosphorylation and activation, and induced EMT and stemness gene transcription, thus positively regulating the metastasis of GC cells. Moreover, TGF-ß1 secretion in the PM microenvironment was significantly increased compared with the matched primary tumor. The blocking effect of SHR-1701 on TGF-ß1 was verified by inhibiting peritoneal metastases in xenografts. Collectively, the interplay of EGR1/TGF-ß1/CD44s/STAT3 signaling between mesothelial cells and GC cells induces EMT and stemness phenotypes, offering potential as a therapeutic target for PM of GC.


Assuntos
Proteína 1 de Resposta de Crescimento Precoce , Neoplasias Peritoneais , Neoplasias Gástricas , Humanos , Linhagem Celular Tumoral , Movimento Celular , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Peritônio/patologia , Transdução de Sinais/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Neoplasias Gástricas/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Microambiente Tumoral/genética , Animais
7.
Neuroscience ; 540: 27-37, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38218401

RESUMO

The expression levels of SHANK3 are associated with autism spectrum disorder (ASD). The dynamic changes in SHANK3 expression during different stages of brain development may impact the progression of ASD. However, no studies or detailed analyses exploring the upstream mechanisms that regulate SHANK3 expression have been reported. In this study, we employed immunofluorescence to examine the expression of SHANK3 in brain organoids at various stages. Our results revealed elevated levels of SHANK3 expression in brain-like organoids at Day 60. Additionally, we utilized bioinformatics software to predict and analyze the SHANK3 gene's transcription start site. Through the dual luciferase reporter gene technique, we identified core transcription elements within the SHANK3 promoter. Site-directed mutations were used to identify specific transcription sites of SHANK3. To determine the physical binding of potential transcription factors to the SHANK3 promoter, we employed electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP). Our findings demonstrated that the transcription factor EGR1 regulates SHANK3 expression by binding to the transcription site of the SHANK3 promoter. Although this study did not investigate the pathological phenotypes of human brain organoids or animal model brains with EGR1 deficiency, which could potentially substantiate the findings observed for SHANK3 mutants, our findings provide valuable insights into the relationship between the transcription factor, EGR1, and SHANK3. This study contributes to the molecular understanding of ASD and offers potential foundations for precise targeted therapy.


Assuntos
Transtorno do Espectro Autista , Animais , Humanos , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Regulação da Expressão Gênica , Fatores de Transcrição/metabolismo , Regiões Promotoras Genéticas , Encéfalo/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
8.
Cell Mol Life Sci ; 81(1): 48, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236296

RESUMO

The MAP kinase ERK is important for neuronal plasticity underlying associative learning, yet specific molecular pathways for neuronal ERK activation are undetermined. RapGEF2 is a neuron-specific cAMP sensor that mediates ERK activation. We investigated whether it is required for cAMP-dependent ERK activation leading to other downstream neuronal signaling events occurring during associative learning, and if RapGEF2-dependent signaling impairments affect learned behavior. Camk2α-cre+/-::RapGEF2fl/fl mice with depletion of RapGEF2 in hippocampus and amygdala exhibit impairments in context- and cue-dependent fear conditioning linked to corresponding impairment in Egr1 induction in these two brain regions. Camk2α-cre+/-::RapGEF2fl/fl mice show decreased RapGEF2 expression in CA1 and dentate gyrus associated with abolition of pERK and Egr1, but not of c-Fos induction, following fear conditioning, impaired freezing to context after fear conditioning, and impaired cAMP-dependent long-term potentiation at perforant pathway and Schaffer collateral synapses in hippocampal slices ex vivo. RapGEF2 expression is largely eliminated in basolateral amygdala, also involved in fear memory, in Camk2α-cre+/-::RapGEF2fl/fl mice. Neither Egr1 nor c-fos induction in BLA after fear conditioning, nor cue-dependent fear learning, are affected by ablation of RapGEF2 in BLA. However, Egr1 induction (but not that of c-fos) in BLA is reduced after restraint stress-augmented fear conditioning, as is freezing to cue after restraint stress-augmented fear conditioning, in Camk2α-cre+/-::RapGEF2fl/fl mice. Cyclic AMP-dependent GEFs have been genetically associated as risk factors for schizophrenia, a disorder associated with cognitive deficits. Here we show a functional link between one of them, RapGEF2, and cognitive processes involved in associative learning in amygdala and hippocampus.


Assuntos
Medo , Genes Precoces , Fatores de Troca do Nucleotídeo Guanina , Memória , Transdução de Sinais , Animais , Camundongos , Proteína 1 de Resposta de Crescimento Precoce/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Proteínas Proto-Oncogênicas c-fos
9.
J Exp Clin Cancer Res ; 43(1): 35, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287371

RESUMO

BACKGROUND: Hepatocellular Carcinoma (HCC) is a matter of great global public health importance; however, its current therapeutic effectiveness is deemed inadequate, and the range of therapeutic targets is limited. The aim of this study was to identify early growth response 1 (EGR1) as a transcription factor target in HCC and to explore its role and assess the potential of gene therapy utilizing EGR1 for the management of HCC. METHODS: In this study, both in vitro and in vivo assays were employed to examine the impact of EGR1 on the growth of HCC. The mouse HCC model and human organoid assay were utilized to assess the potential of EGR1 as a gene therapy for HCC. Additionally, the molecular mechanism underlying the regulation of gene expression and the suppression of HCC growth by EGR1 was investigated. RESULTS: The results of our investigation revealed a notable decrease in the expression of EGR1 in HCC. The decrease in EGR1 expression promoted the multiplication of HCC cells and the growth of xenografted tumors. On the other hand, the excessive expression of EGR1 hindered the proliferation of HCC cells and repressed the development of xenografted tumors. Furthermore, the efficacy of EGR1 gene therapy was validated using in vivo mouse HCC models and in vitro human hepatoma organoid models, thereby providing additional substantiation for the anti-cancer role of EGR1 in HCC. The mechanistic analysis demonstrated that EGR1 interacted with the promoter region of phosphofructokinase-1, liver type (PFKL), leading to the repression of PFKL gene expression and consequent inhibition of PFKL-mediated aerobic glycolysis. Moreover, the sensitivity of HCC cells and xenografted tumors to sorafenib was found to be increased by EGR1. CONCLUSION: Our findings suggest that EGR1 possesses therapeutic potential as a tumor suppressor gene in HCC, and that EGR1 gene therapy may offer benefits for HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Regulação Neoplásica da Expressão Gênica , Glicólise , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/metabolismo , Sorafenibe/farmacologia
10.
Int J Mol Sci ; 24(21)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37958905

RESUMO

Cardiac glycosides (CGs) constitute a group of steroid-like compounds renowned for their effectiveness in treating cardiovascular ailments. In recent times, there has been growing recognition of their potential use as drug leads in cancer treatment. In our prior research, we identified three highly promising CG compounds, namely lanatoside C (LC), peruvoside (PS), and strophanthidin (STR), which exhibited significant antitumor effects in lung, liver, and breast cancer cell lines. In this study, we investigated the therapeutic response of these CGs, with a particular focus on the MCF-7 breast cancer cell line. We conducted transcriptomic profiling and further validated the gene and protein expression changes induced by treatment through qRT-PCR, immunoblotting, and immunocytochemical analysis. Additionally, we demonstrated the interactions between the ligands and target proteins using the molecular docking approach. The transcriptome analysis revealed a cluster of genes with potential therapeutic targets involved in cytotoxicity, immunomodulation, and tumor-suppressor pathways. Subsequently, we focused on cross-validating the ten most significantly expressed genes, EGR1, MAPK1, p53, CCNK, CASP9, BCL2L1, CDK7, CDK2, CDK2AP1, and CDKN1A, through qRT-PCR, and their by confirming the consistent expression pattern with RNA-Seq data. Notably, among the most variable genes, we identified EGR1, the downstream effector of the MAPK signaling pathway, which performs the regulatory function in cell proliferation, tumor invasion, and immune regulation. Furthermore, we substantiated the influence of CG compounds on translational processes, resulting in an alteration in protein expression upon treatment. An additional analysis of ligand-protein interactions provided further evidence of the robust binding affinity between LC, PS, and STR and their respective protein targets. These findings underscore the intense anticancer activity of the investigated CGs, shedding light on potential target genes and elucidating the probable mechanism of action of CGs in breast cancer.


Assuntos
Neoplasias da Mama , Glicosídeos Cardíacos , Humanos , Feminino , Glicosídeos Cardíacos/farmacologia , Glicosídeos Cardíacos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Glicosídeos/farmacologia , Simulação de Acoplamento Molecular , Transdução de Sinais , Perfilação da Expressão Gênica , Linhagem Celular Tumoral , Proliferação de Células , Transcriptoma , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo
11.
Cancer Biol Ther ; 24(1): 2270106, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37862152

RESUMO

BACKGROUND: Bladder cancer is one of the most common malignant tumors of the urinary system, and its incidence is increasing worldwide. However, the underlying mechanisms that trigger migration, invasion and chemotherapy resistance are unclear. RESULTS: Bioinformatics analysis of bladder cancer cohort indicated that LINC00839 is deregulated in bladder cancer. LINC00839 was validated and highly expressed in bladder cancer patients and cell lines. In addition, LINC00839 induced the migration, invasion and Gemcitabine resistance of bladder cancer cells. We identified that the transcription factor EGR1 directly repressed LINC00839 and thereby suppressed the migration and invasion of bladder cancer cells. Furthermore, LINC00839 interacted with miR-142, which subsequently regulated the expression of SOX5, a well-studied oncogene and targeted by miR-142. In addition, EGR1 served as a suppressive transcription factor of SOX5. Therefore, EGR1 directly or indirectly regulates SOX5 via LINC00839/miR-142 axis. LINC00839 induced Gemcitabine resistance by promoting autophagy. CONCLUSIONS: EGR1, LINC00839/miR-142 and SOX5 form a coherent feed-forward loop that modulates the migration, invasion and Gemcitabine resistance of bladder cancer.


Assuntos
MicroRNAs , Neoplasias da Bexiga Urinária , Humanos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Gencitabina , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição SOXD/genética , Fatores de Transcrição SOXD/metabolismo , Fatores de Transcrição/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , RNA não Traduzido/genética
12.
Hum Mol Genet ; 33(1): 78-90, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37792788

RESUMO

Down syndrome (DS) is the most prevalent chromosomal disorder associated with a higher incidence of pulmonary arterial hypertension (PAH). The dysfunction of vascular endothelial cells (ECs) is known to cause pulmonary arterial remodeling in PAH, although the physiological characteristics of ECs harboring trisomy 21 (T21) are still unknown. In this study, we analyzed the human vascular ECs by utilizing the isogenic pairs of T21-induced pluripotent stem cells (iPSCs) and corrected disomy 21 (cDi21)-iPSCs. In T21-iPSC-derived ECs, apoptosis and mitochondrial reactive oxygen species (mROS) were significantly increased, and angiogenesis and oxygen consumption rate (OCR) were significantly impaired as compared with cDi21-iPSC-derived ECs. The RNA-sequencing identified that EGR1 on chromosome 5 was significantly upregulated in T21-ECs. Both EGR1 suppression by siRNA and pharmacological inhibitor could recover the apoptosis, mROS, angiogenesis, and OCR in T21-ECs. Alternately, the study also revealed that DYRK1A was responsible to increase EGR1 expression via PPARG suppression, and that chemical inhibition of DYRK1A could restore the apoptosis, mROS, angiogenesis, and OCR in T21-ECs. Finally, we demonstrated that EGR1 was significantly upregulated in the pulmonary arterial ECs from lung specimens of a patient with DS and PAH. In conclusion, DYRK1A/PPARG/EGR1 pathway could play a central role for the pulmonary EC functions and thus be associated with the pathogenesis of PAH in DS.


Assuntos
Síndrome de Down , Hipertensão Pulmonar , Células-Tronco Pluripotentes Induzidas , Hipertensão Arterial Pulmonar , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Diferenciação Celular/genética , Células Endoteliais/metabolismo , Síndrome de Down/complicações , Síndrome de Down/genética , Síndrome de Down/metabolismo , Hipertensão Pulmonar/genética , PPAR gama/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Células Cultivadas , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo
13.
J Mol Neurosci ; 73(9-10): 738-750, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37668894

RESUMO

Discovery and validation of new, reliable diagnostic and predictive biomarkers for schizophrenia (SCZ) are an ongoing effort. Here, we assessed the mRNA expression and DNA methylation of the TCF4, MBP, and EGR1 genes in the blood of patients with SCZ and evaluated their relationships to psychopathology and cognitive impairments. Quantitative real-time PCR and quantitative methylation-specific PCR methods were used to assess the expression level and promoter DNA methylation status of these genes in 70 drug-free SCZ patients and 72 healthy controls. The correlation of molecular changes with psychopathology and cognitive performance of participants was evaluated. We observed downregulation of TCF4 and upregulation of MBP mRNA levels in SCZ cases, relative to controls in our study. DNA methylation status at the promoter region of TCF4 demonstrated an altered pattern in SCZ as well. Additionally, TCF4 mRNA levels were inversely correlated with PANSS and Stroop total errors and positively correlated with WAIS total score and working memory, consistent with previous studies by our group. In contrast, MBP mRNA level was significantly positively correlated with PANSS and Stroop total errors and inversely correlated with WAIS total score and working memory. These epigenetic and expression signatures can help to assemble a peripheral biomarker-based diagnostic panel for SCZ.


Assuntos
Disfunção Cognitiva , Esquizofrenia , Humanos , Predisposição Genética para Doença , Metilação de DNA , Disfunção Cognitiva/genética , Expressão Gênica , Inteligência , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Fator de Transcrição 4/genética , Fator de Transcrição 4/metabolismo
14.
Cell Transplant ; 32: 9636897231193073, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37737125

RESUMO

Angiogenesis is strongly associated with ovarian hyperstimulation syndrome (OHSS) progression. Early growth response protein 1 (EGR1) plays an important role in angiogenesis. This study aimed to investigate the function and mechanism of EGR1 involved in OHSS progression. RNA-sequencing was used to identify differentially expressed genes. In vitro OHSS cell model was induced by treating KGN cells with human chorionic gonadotropin (hCG). In vivo OHSS model was established in mice. The expression levels of EGR1, SOX1, and VEGF were determined by Quantitative Real-Time polymerase chain reaction (qRT-PCR), Western blot, immunofluorescence staining, and immunochemistry assay. The content of VEGF in the culture medium of human granulosa-like tumor cell line (KGN) cells was accessed by the ELISA assay. The regulatory effect of EGR1 on SRY-box transcription factor 9 (SOX9) was addressed by luciferase reporter assay and chromatin immunoprecipitation. The ERG1 and SOX9 levels were significantly upregulated in granulosa cells from OHSS patients and there was a positive association between EGR1 and SOX9 expression. In the ovarian tissues of OHSS mice, the levels of EGR1 and SOX9 were also remarkedly increased. Treatment with hCG elevated the levels of vascular endothelial growth factor (VEGF), EGR1, and SOX9 in KGN cells. Silencing of EGR1 reversed the promoting effect of hCG on VEGF and SOX9 expression in KGN cells. EGR1 transcriptionally regulated SOX9 expression through binding to its promoter. In addition, administration of dopamine decreased hCG-induced VEGF in KGN cells and ameliorated the progression of OHSS in mice, which were companied with decreased EGR1 and SOX9 expression. EGR1 has a promoting effect on OHSS progression and dopamine protects against OHSS through suppression of EGR1/SOX9 cascade. Our findings may provide new targets for the treatment of OHSS.


Assuntos
Síndrome de Hiperestimulação Ovariana , Animais , Feminino , Humanos , Camundongos , Gonadotropina Coriônica/farmacologia , Gonadotropina Coriônica/genética , Gonadotropina Coriônica/metabolismo , Dopamina , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Síndrome de Hiperestimulação Ovariana/genética , Síndrome de Hiperestimulação Ovariana/induzido quimicamente , Síndrome de Hiperestimulação Ovariana/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
Int J Mol Sci ; 24(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37762678

RESUMO

Vasculogenic mimicry (VM) is an intriguing phenomenon observed in tumor masses, in which cancer cells organize themselves into capillary-like channels that closely resemble the structure and function of blood vessels. Although VM is believed to contribute to alternative tumor vascularization, the detailed regulatory mechanisms controlling these cellular processes remain poorly understood. Our study aimed to investigate the role of Early Growth Response 1 (EGR1) in regulating VM in aggressive cancer cells, specifically MDA-MB-231 triple-negative breast cancer cells. Our study revealed that EGR1 promotes the formation of capillary-like tubes by MDA-MB-231 cells in a 3-dimensional Matrigel matrix. EGR1 was observed to upregulate Kruppel-like factor 4 (KLF4) expression, which regulates the formation of the capillary-like tube structure. Additionally, our findings highlight the involvement of the ERK1/2 and p38 mitogen-activated protein kinase pathways in mediating the expression of EGR1 and KLF4, underscoring their crucial role in VM in MDA-MB-231 cells. Understanding these regulatory mechanisms will provide valuable insights into potential therapeutic targets for preventing VM during the treatment of triple-negative breast cancer.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Linhagem Celular , Proteína 1 de Resposta de Crescimento Precoce/genética , Fator 4 Semelhante a Kruppel , Ativação Transcricional , Neoplasias de Mama Triplo Negativas/genética , Regulação para Cima
16.
Arthritis Res Ther ; 25(1): 151, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596660

RESUMO

BACKGROUND: The early growth response 1 (EGR1) is a central transcription factor involved in systemic sclerosis (SSc) pathogenesis. Iguratimod is a synthesized anti-rheumatic disease-modifying drug, which shows drastic inhibition to EGR1 expression in B cells. This study is aiming to investigate the anti-fibrotic effect of iguratimod in SSc. METHODS: EGR1 was detected by immunofluorescence staining real-time PCR or western blot. Iguratimod was applied in EGR1 overexpressed or knockdown human dermal fibroblast, bleomycin pre-treated mice, tight skin 1 mice, and SSc skin xenografts. RNA sequencing was performed in cultured fibroblast and xenografts to identify the iguratimod regulated genes. RESULTS: EGR1 overexpressed predominantly in non-immune cells of SSc patients. Iguratimod reduced EGR1 expression in fibroblasts and neutralized changes of EGR1 response genes regulated by TGFß. The extracellular matrix (ECM) production and activation of fibroblasts were attenuated by iguratimod while EGR1 overexpression reversed this effect of iguratimod. Iguratimod ameliorated the skin fibrosis induced by bleomycin and hypodermal fibrosis in TSK-1 mice. Decreasing in the collagen content as well as the density of EGR1 or TGFß positive fibroblasts of skin xenografts from naïve SSc patients was observed after local treatment of iguratimod. CONCLUSION: Targeting EGR1 expression is a probable underlying mechanism for the anti-fibrotic effect of iguratimod.


Assuntos
Antirreumáticos , Proteína 1 de Resposta de Crescimento Precoce , Escleroderma Sistêmico , Animais , Humanos , Camundongos , Bleomicina/toxicidade , Cromonas , Fibrose , Escleroderma Sistêmico/tratamento farmacológico , Proteína 1 de Resposta de Crescimento Precoce/efeitos dos fármacos , Proteína 1 de Resposta de Crescimento Precoce/genética
17.
Connect Tissue Res ; 64(5): 479-490, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37287279

RESUMO

BACKGROUND: Tendon-derived stem cells (TDSCs) are proposed as a potential cell-seed for the treatment of tendon injury due to their tenogenic differentiation potential. In this work, we defined the action of long non-coding RNA (lncRNA) muscle differentiation 1 (LINCMD1) in tenogenic differentiation of human TDSCs (hTDSCs). METHODS: Quantitative real-time PCR (qRT-PCR) was used to assess the levels of LINCMD1, microRNA (miR)-342-3p, and early growth response-1 (EGR1) mRNA. Cell proliferation was detected by the XTT colorimetric assay. Protein expression was quantified by western blot. hTDSCs were grown in an osteogenic medium to induce osteogenic differentiation, and the extent of osteogenic differentiation was assessed by Alizarin Red Staining (ARS). The activity of alkaline phosphatase (ALP) was measured by the ALP Activity Assay Kit. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were used to evaluate the direct relationship between miR-342-3p and LINCMD1 or EGR1. RESULTS: Our results showed that enforced expression of LINCMD1 or suppression of miR-342-3p accelerated the proliferation and tenogenic differentiation and reduced osteogenic differentiation of hTDSCs. LINCMD1 regulated miR-342-3p expression by binding to miR-342-3p. EGR1 was identified as a direct and functional target of miR-342-3p, and knockdown of EGR1 reversed the effects of miR-342-3p suppression on cell proliferation and tenogenic and osteogenic differentiation. Furthermore, the miR-342-3p/EGR1 axis mediated the regulation of LINCMD1 on hTDSC proliferation and tenogenic and osteogenic differentiation. CONCLUSION: Our study suggests the induction of LINCMD1 in tenogenic differentiation of hTDSCs through miR-342-3p/EGR1 axis.


Assuntos
MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Osteogênese/genética , Células-Tronco/metabolismo , Diferenciação Celular/genética , Tendões/metabolismo , Células Cultivadas , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo
18.
Oncol Rep ; 50(1)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37264970

RESUMO

Lentinan (LNT) isolated from Lentinus edodes is a vital host defense potentiator previously utilized as an adjuvant in cancer therapy. The present study investigated the effect of LNT on the mouse hepatocellular carcinoma (HCC) cell line Hepa1­6 and its possible mechanism. Mouse HCC apoptosis and its potential associated mechanism were then explored using in vitro and in vivo approaches. For in vitro approaches, the effect of LNT on the proliferation of Hepa1­6 cells was investigated by Cell Counting Kit­8 assay. Annexin V­FITC staining and flow cytometry were applied to explore HCC apoptosis. Western blotting was used to analyze related proteins, such as EGR1, phosphatase and tensin homolog (PTEN), phosphorylated protein kinase B (p­Akt), protein kinase B (Akt), B lymphocyte­2 (Bcl­2), Bcl2 family­associated X protein (Bax), etc. Cellular immunofluorescence staining was employed to assess the localization and expression of EGR1 and PTEN in nuclear and cytoplasmic fractions of Hepa1­6 cells. The association between EGR1 and PTEN was explored by EGR1 overexpression in cell lines. For in vivo methods, a mouse model of diethylnitrosamine (DEN)­induced primary liver cancer was established using C57BL/6 mice to investigate the inhibitory effect of LNT on liver cancer. Histopathology of liver tissue from mice was detected by hematoxylin­eosin staining and immunohistochemical assay. In vitro and in vivo results showed that LNT can inhibit the proliferation and promote the apoptosis of mouse HCC cells. Besides, LNT increased the expression of EGR1 in Hepa1­6 cells, which is translocated to the nucleus to function as a transcriptional factor. EGR1 then activates the expression of the tumor suppressor PTEN, thereby inhibiting the activation of the AKT signaling pathway. These data revealed a novel anti­tumor mechanism by which LNT can induce apoptosis to inhibit mouse HCC progression through the EGR1/PTEN/AKT axis. These results provide a scientific basis for the potential use of LNT in drug development and clinical applications associated with primary liver cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Lentinano/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Transdução de Sinais , Apoptose , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Proliferação de Células , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo
19.
Int J Mol Sci ; 24(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37373116

RESUMO

Podocyte damage and renal inflammation are the main features and pathogenesis of diabetic nephropathy (DN). Inhibition of lysophosphatidic acid (LPA) receptor 1 (LPAR1) suppresses glomerular inflammation and improves DN. Herein, we investigated LPA-induced podocyte damage and its underlying mechanisms in DN. We investigated the effects of AM095, a specific LPAR1 inhibitor, on podocytes from streptozotocin (STZ)-induced diabetic mice. E11 cells were treated with LPA in the presence or absence of AM095, and the expression of NLRP3 inflammasome factors and pyroptosis were measured. A chromatin immunoprecipitation assay and Western blotting were performed to elucidate underlying molecular mechanisms. Gene knockdown by transfecting small interfering RNA was used to determine the role of the transcription factor Egr1 (early growth response protein 1) and histone methyltransferase EzH2 (Enhancer of Zeste Homolog 2) in LPA-induced podocyte injury. AM095 administration inhibited podocyte loss, NLRP3 inflammasome factor expression, and cell death in STZ-induced diabetic mice. In E11 cells, LPA increased NLRP3 inflammasome activation and pyroptosis via LPAR1. Egr1 mediated NLRP3 inflammasome activation and pyroptosis in LPA-treated E11 cells. LPA decreased H3K27me3 enrichment at the Egr1 promoter in E11 cells by downregulating EzH2 expression. EzH2 knockdown further increased LPA-induced Egr1 expression. In podocytes from STZ-induced diabetic mice, AM095 suppressed Egr1 expression increase and EzH2/H3K27me3 expression reduction. Collectively, these results demonstrate that LPA induces NLRP3 inflammasome activation by downregulating EzH2/H3K27me3 and upregulating Egr1 expression, resulting in podocyte damage and pyroptosis, which may be a potential mechanism of DN progression.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Podócitos , Camundongos , Animais , Nefropatias Diabéticas/metabolismo , Podócitos/metabolismo , Inflamassomos/metabolismo , Regulação para Baixo , Piroptose , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Histonas/metabolismo , Diabetes Mellitus Experimental/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Inflamação/metabolismo
20.
ACS Chem Neurosci ; 14(11): 1981-1991, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37166273

RESUMO

As a common and disabling disease of the elderly, the standard therapies of Parkinson's disease (PD) fail to curb the ongoing neurodegeneration, thus calling for newer strategies. This work was conducted to examine the effect of microRNA-381 (miR-381) on oxidative stress injury to dopaminergic neurons in PD in vivo and in vitro. We established an in vivo mouse model of PD using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and an in vitro cell model of PD by treating dopaminergic neuron MN9D cells with 1-methyl-4-phenylpyridinium (MPP+). It was established that miR-381 was poorly expressed in the substantia nigra pars compacta (SNc) of MPTP-lesioned mice. The motor function of MPTP-lesioned mice was evaluated in the presence of ectopic miR-381 expression, and oxidative stress and dopaminergic neuron injury were also characterized. Restoration of miR-381 was demonstrated to diminish oxidative stress and damage in dopaminergic neurons, accompanied by enhanced motor functions. Mechanistically, the putative binding sites of miR-381 were retrieved through the starBase database, and the luciferase activity assay confirmed that it bound to EGR1 and repressed its expression, which then upregulated the expression of PTEN and p53. The neuroprotective effects of miR-381 on the motor function and dopaminergic neuronal damage were counteracted by ectopic EGR1 expression. Together, this study indicates that the binding of miR-381 to EGR1 upregulates PTEN/p53 to alleviate PD, which provides novel insights for a neuroprotective mechanism in PD.


Assuntos
Proteína 1 de Resposta de Crescimento Precoce , MicroRNAs , Doença de Parkinson , Animais , Camundongos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , 1-Metil-4-fenilpiridínio/toxicidade , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Estresse Oxidativo , Doença de Parkinson/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/farmacologia , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...